Linear Collider Physics at lower Energies

Klaus Mönig

- Introduction
- The GigaZ scenario
- Electroweak physics
- B-physics
- Other ideas
- Detector issues
- Conclusions

IIIIIIOUUCIIOII

Physics at $\sqrt{s} \sim m_{\rm Z}(-200\,{\rm GeV})$ has proven to be very fruitful in the past:

- Electroweak precision tests can probe physics at high scales and can test the consistency of the favourite model at the loop level.
- The Z-pole is a rich source for some particles (B,D,τ) with distinct advantages to lower energy machines.

It is therefore worth to study what we can learn from a much increased integrated luminosity in the light of the competition from **TEVATRON** run II, LHC and the B-factories

This talk tries to point out the possibilities of a linear collider and is necessarily on the optimistic side. It is meant to motivate further work on the subject.

Snowmass 2001, E3 GigaZ-2 Klaus Mönig

The talk is based on the following assumptions:

- $> 10^9$ recorded Z-decays
 - $\sim 50 100 \text{ days at } \mathcal{L} = 5 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$
 - $^{\circ}$ a Z-rate of $\sim 100-200 \mathrm{Hz}$
- high polarisation of the electron beam (> 80%)
- very high precision on polarimetry ($\mathcal{O}(0.1\% 0.5\%)$) and/or positron polarisation (> 20%)

GigaZ running modes

- NLC scheme
 - -e⁻-beam independent positron source
 - can start early with GigaZ and upgrade to high energy later
- TESLA scheme
 - positron source using high energy e⁻ beam
 - use one part of the machine for 45 GeV beam and the other part for positron production
 - start with physics at high energy and come back to the Z later

Which luminosity can be reached?

	NLC		TESLA
	norm	low δ_B	
$\mathcal{L}(10^{33})$	4.1	2	5
$\delta_{B}\left(\% ight)$	0.16	0.05	0.1
$\Delta \mathcal{P}_{\mathrm{IP}} (\%)^*$	0.07	0.02	0.1

(* for spent beam, for colliding particles \sim factor four smaller)

Which statistics can be reached?

- Total cross section $\sigma \approx \sigma_u (1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-})$ $(\sigma_u \approx 30 \text{nb})$
- With $\mathcal{L} = 5 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$:
 - $-\sim 50 \text{ days for } 10^9 \text{ Zs with } \mathcal{P}_{e^-}/\mathcal{P}_{e^+} = 0.8/0.6$ $-\sim 80 \text{ days for } 10^9 \text{ Zs with } \mathcal{P}_{e^+} = 0$
- $\Rightarrow 10^9$ Zs should be possible within the normal LC running budget
- \Rightarrow 10¹⁰ Zs can be produced with a dedicated facility in 3–5 years (150 days/year)

Interesting quantities:

- normalisation of axial-vector coupling of $Z \to \ell\ell$: $\Delta \rho_{\ell}$
- effective weak mixing angle from ratio of vector to axial vector coupling of $Z \to \ell\ell$: $\sin^2 \theta_{\text{eff}}^{\ell}$
- mass of the W: m_W
- strong coupling constant from the Z hadronic decay rate: $\alpha_s(m_Z^2)$
- vertex correction to Zbb vertex: $R_{\rm b}, A_{\rm b}$

$$\Delta \rho_{\ell}, \ \alpha_s(m_{\rm Z}^2)$$

Minimally correlated observables:

	LEP precision
$m_{ m Z}$	$0.2 \cdot 10^{-4}$
$\Gamma_{ m Z}$	$0.9 \cdot 10^{-3}$
$\sigma_0^{\mathrm{had}} = \frac{12\pi}{m_Z^2} \frac{\Gamma_e \Gamma_{\mathrm{had}}}{\Gamma_Z^2}$	$0.9 \cdot 10^{-3}$
$R_\ell = rac{\Gamma_{ m had}}{\Gamma_l}$	$1.2 \cdot 10^{-3}$

- \Rightarrow Need to scan
- \Rightarrow Need absolute cross sections

Assumptions:

- relative beam energy error around Z-pole: 10^{-5} $\Rightarrow \Delta\Gamma_{\rm Z}/\Gamma_{\rm Z} = 0.4 \cdot 10^{-3}$ (Need to understand the beam energy measurement and the systematics due to beamstrahlung and beamspread)
- selection efficiency for μs , τs , hadrons (and exp error on \mathcal{L}) improved by a factor three relative to the best LEP experiment $\Rightarrow \Delta R_{\ell}/R_{\ell} = 0.3 \cdot 10^{-3}$
- theoretical error on luminosity stays at 0.05% $\Rightarrow \Delta \sigma_0^{\text{had}}/\sigma_0^{\text{had}} = 0.6 \cdot 10^{-3}$ (again if beamspread/-strahlung understood)

Improvement on lineshape related quantities:

	LEP	GigaZ
$m_{ m Z}$	$91.1874 \pm 0.0021 \text{GeV}$	$\pm 0.0021 \mathrm{GeV}$
$lpha_s(m_{ m Z}^2)$	0.1183 ± 0.0027	± 0.0009
Δho	$(0.55 \pm 0.10) \cdot 10^{-2}$	$\pm 0.05 \cdot 10^{-2}$
$N_{ u}$	2.984 ± 0.008	± 0.004

$$\sin^2 \theta_{\rm eff}^{\ell}$$
:

Most sensitive observable is A_{LR} , so only this is discussed

$$A_{LR} = \frac{1}{\mathcal{P}} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \mathcal{A}_e = \frac{2v_e a_e}{v_e^2 + a_e^2}$$
$$v_e/a_e = 1 - 4\sin^2\theta_{\text{eff}}^{\ell}$$

independent of the final state

Statistical error with 10^9 Zs: $\Delta A_{\rm LR} = 4 \cdot 10^{-5}$

$$(\text{for } \mathcal{P}_{e^{-}} = 80\%, \ \mathcal{P}_{e^{+}} = 0)$$

Crucial ingredient: polarisation measurement

Error from polarisation: $\Delta A_{LR}/A_{LR} = \Delta P/P$

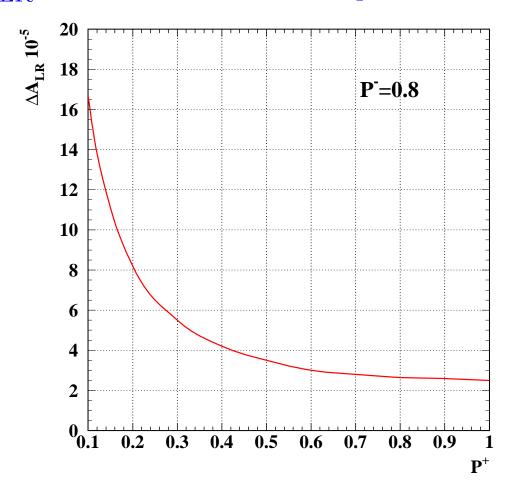
- only electron polarisation with $\Delta P/P = 0.5\%$ $\Rightarrow \Delta A_{\rm LR} = 8 \cdot 10^{-4}$ (Still factor three to SLD, but few million Zs are sufficient)
- with positron polarisation $\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-}}$ \Rightarrow gain a factor four for $\mathcal{P}_{e^-}/\mathcal{P}_{e^+} = 80\%/60\%$ due to error propagation (even when error is 100% correlated between the polarimeters the gain is a factor three)

$$\sigma = \sigma_{u} \left[1 - \mathcal{P}_{e^{+}} \mathcal{P}_{e^{-}} + A_{LR} (\mathcal{P}_{e^{+}} - \mathcal{P}_{e^{-}}) \right]$$

$$A_{LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-})}}$$

can measure A_{LR} independent from polarimeters with very small loss in precision and only 10% of the luminosity on the small cross sections

$\Delta A_{\rm LR}$ as a function of the e^+ polarisation



For 10⁹ Zs already 20% positron polarisation is better than a 0.1% polarimeter!

Crucial problem for Blondel scheme: Difference of absolute values of helicity states.

For
$$\mathcal{P} = \pm |\mathcal{P}| + \delta \mathcal{P}$$
: $dA_{LR}/d\delta \mathcal{P} = 0.5$ for e^- and e^+ separately

 \Rightarrow understand polarisation difference to $< 10^{-4}$

Many effects can be treated with a polarimeter with several channels with different analysing power

- \rightarrow control of the laser-polarisation difference
- → control of asymmetric backgrounds

Further issue: polarisation correlation effects (e.g. correlated time dependencies, depolarisation effects in the interaction region, transverse dispersion effects)

Order of magnitude estimate:

• change $\Delta \mathcal{P}/\mathcal{P}$ by $\pm 1\%$ for e^+ and e^- simultaneously for half of the luminosity

$$\Rightarrow \Delta A_{\rm LR} = 0.7 \cdot 10^{-5}$$

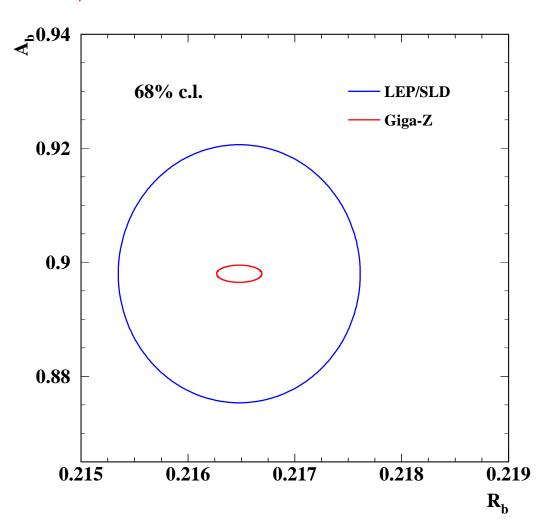
- Effect goes quadratic with $\Delta P/P$
- Seems not to be a big problem

Other systematics

- Beam energy: $dA_{LR}/d\sqrt{s} = 2 \cdot 10^{-2}/GeV$ from γZ -interference \Rightarrow need $\Delta\sqrt{s} \sim 1$ MeV relative to m_Z
- Beamstrahlung: $\Delta A_{\rm LR} = 9 \cdot 10^{-4}$ (TESLA) \Rightarrow need to know beamstrahlung to a few % However if beamstrahlung is the same in $m_{\rm Z}$ -scan and $A_{\rm LR}$ -running corrections are automatic
- (Energy spread is not relevant for A_{LR} since slope is linear)
- Other systematics should be small

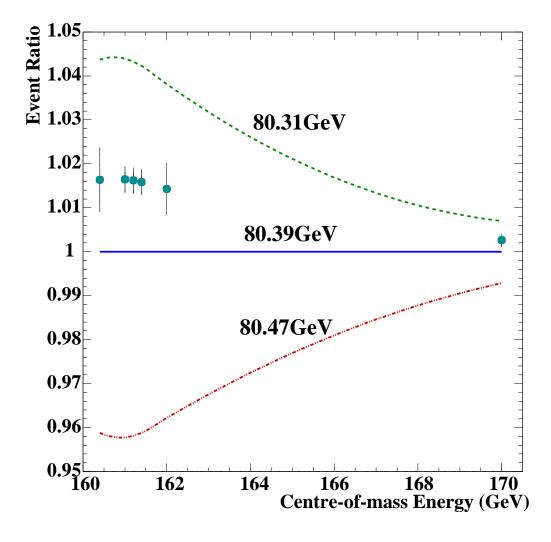
In total $\Delta A_{\rm LR} = 10^{-4} \Rightarrow \Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.000013$ seems a realistic estimate Factor 13 to LEP/SLD

- \bullet $R_{\rm b}$:
 - ➤ factor five to LEP/SLD due to better b-tagging and higher statistics
- *A*_b:
 - ► factor 15 to LEP/SLD due to higher statistics, beam polarisation and b-tagging
 - → If the slight discrepancy currently seen at LEP/SLD is real it cannot escape GigaZ



Threshold scan:

- Near threshold W-pair production is dominated by neutrino t-channel exchange
 - $\Rightarrow \beta$ -suppression gives high sensitivity to $m_{\rm W}$
 - \Rightarrow no (unknown) triple gauge couplings involved
- A six point scan around $\sqrt{s} = 161 \,\text{GeV}$ has been simulated with $\mathcal{L} = 100 \,\text{fb}^{-1}$ (one year!!!)



Snowmass 2001, E3 ${
m Giga Z-12}$ Klaus Mönig

- Efficiencies/purities assumed as at LEP
- Polarisations used to measure background/ enhance signal
 - $-\text{need }\Delta\mathcal{P}/\mathcal{P}<0.25\%$
 - -can use Blondel scheme on rad. ret. events if positron polarisation is available
 - $-A_{\rm LR}^{ff}(160)$ GeV large, rapidly changing with \sqrt{s} and different for up- and down-type quarks \Rightarrow need to understand left-right asymmetry for selected background very well
- $\Delta m_{\rm W} = 6$ MeV possible with 0.25% error on luminosity and efficiencies
 - error increases only to 7 MeV if efficiencies are fitted
- Factor 2-3 better than LHC

Parametric errors

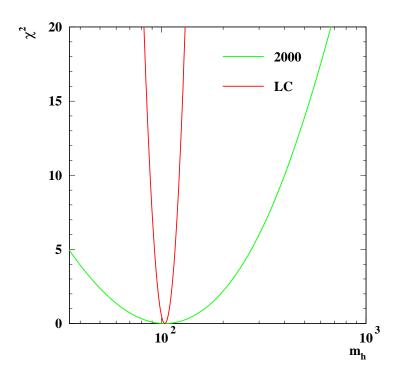
- largest effect: Running of α
 - Using data only (including the latest BES results):

$$\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.00014, \, \Delta m_{\text{W}} = 7 \,\text{MeV}$$

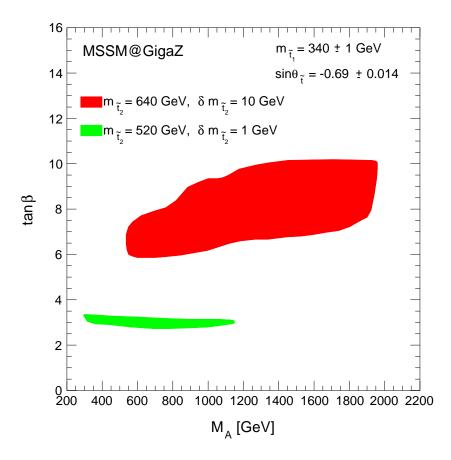
- $-\sim$ factor three improvement using perturbative QCD at low energy
- with $\sigma(e^+e^-\to had)$ below the Υ to 1% $\Delta \sin^2\theta_{\text{eff}}^{\ell} = 0.000017$, $\Delta m_{\text{W}} < 1 \text{ MeV}$
- 2 MeV error on $m_{\rm Z}$ gives $\Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.000014, \ \Delta m_{\rm W} = 1 \,\text{MeV}$ (if W-mass calibrated to $m_{\rm Z}$)
- $\Delta m_{\rm t} = 1 \, {\rm GeV} \, {\rm gives}$ $\Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.00003, \, \Delta m_{\rm W} = 6 \, {\rm MeV}$ $\Rightarrow \, {\rm no \, problem \, with \, \, LC \, \, precision \, \, of \, \, } m_{\rm t} \, \, (< 200 \, {\rm MeV})$

 $(\sin^2\theta_{\text{eff}}^{\ell} \text{ is at its limit from } \Delta\alpha(m_{\text{Z}}) \text{ and } \Delta m_{\text{Z}}!)$

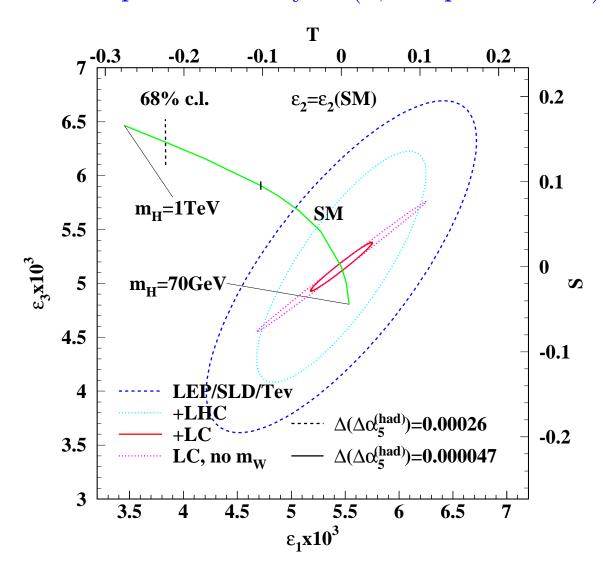
Within SM $m_{\rm H}$ can be predicted to 5% from precision data



Within the MSSM the data can be used to measure model parameters



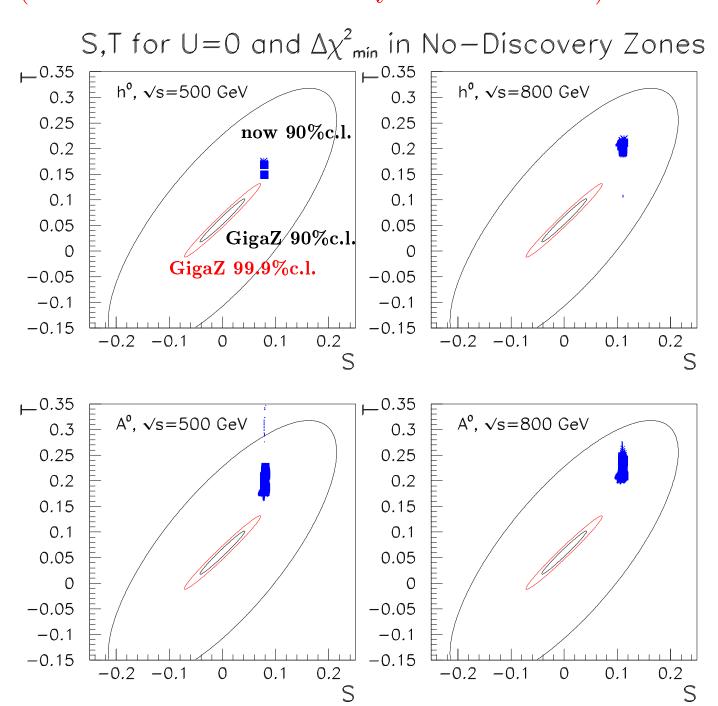
Model independent analysis (ε , ST parameters)



- dramatic improvement in $m_{\rm H}$ direction
- ullet improvement perpendicular to $m_{
 m H}$ largely due to $m_{
 m W}$
- significant Higgs constraint independent of ε_1 (T) possible

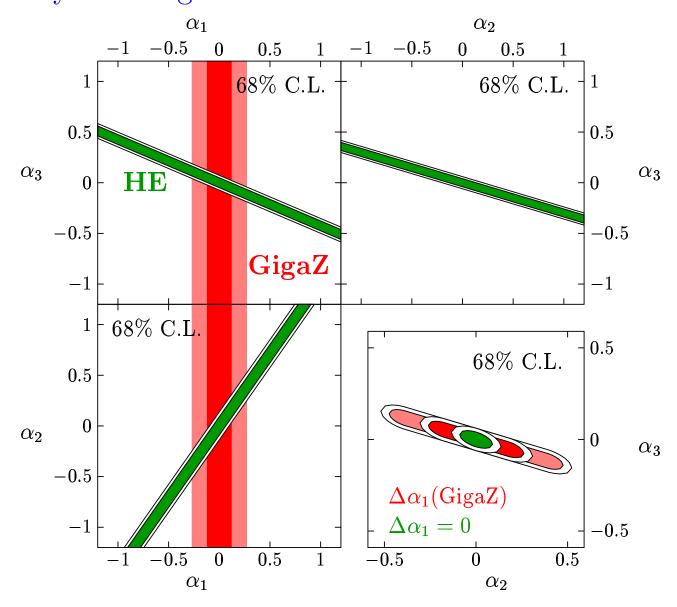
E.g. exclusion of a two Higgs doublet model with a light Higgs

(that cannot be excluded by direct searches)



For these types of exclusions $m_{\rm W}$ is important!

GigaZ also important for strong electroweak symmetry breaking:



Limits correspond to $\Lambda^* = \mathcal{O}(10 \,\text{TeV}) \gg 3 \,\text{TeV}$

Available statistics: $4 \cdot 10^8 - 4 \cdot 10^9$ B-hadrons for $10^9 - 10^{10}$ Zs

Comparison with e⁺e⁻-B-factories

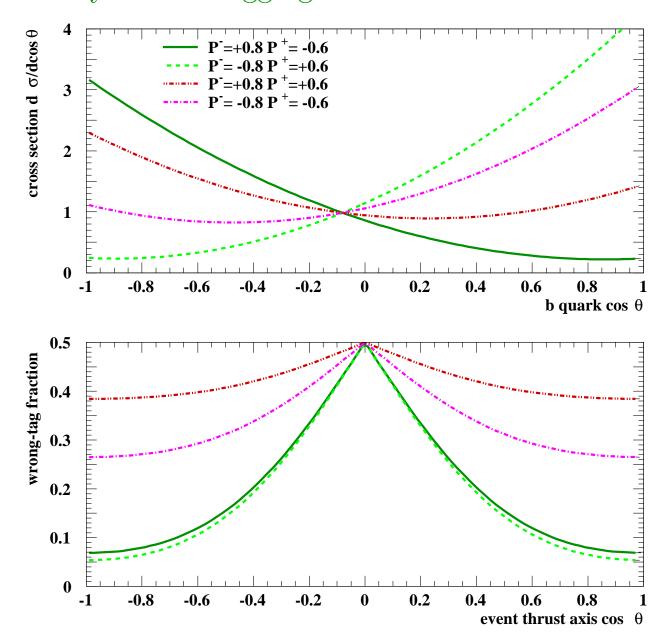
- comparable statistics
- large boost allows separation of the two Bs
- large boost gives much better decay length resolution
- also B_s and Λ_b produced
- large $A_{\rm FB}$ with polarised beams gives very good initial state charge tagging

Comparison with LHC-b,BTeV

- much lower statistics
- however all Bs are triggered and can be reconstructed
- much cleaner environment

Up to now no GigaZ specific CP-studies, only repetition of B-factory/LHC-b/etc.

Primary flavour tagging from B-direction



 $\epsilon D^2 \approx 0.6$ from B-direction only

Typical at other machines: $\epsilon D^2 \approx 0.1 - 0.25$

Other methods like vertex charge can strongly improve in central region, however no detailed studies yet.

Measure time dependent asymmetries

$$A(t) = \frac{N_{B^0}(t) - N_{\bar{B}^0}(t)}{N_{B^0}(t) + N_{\bar{B}^0}(t)} = a_c \cos \Delta mt + a_s \sin \Delta mt$$

mainly two examined decay modes

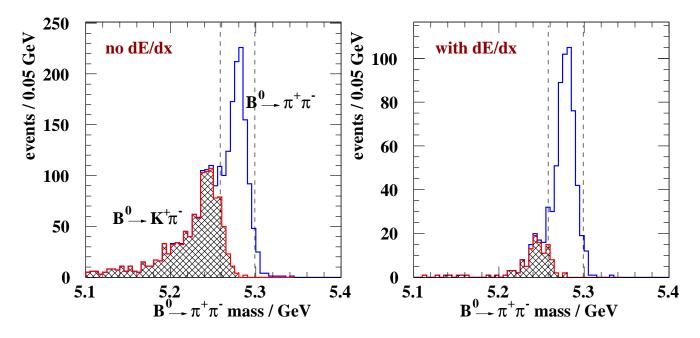
- $B^0 \to J/\Psi K_s^0$: $-a_s = -\sin 2\beta, \ a_c = 0$
- $B^0 \to \pi^+ \pi^-$:
 - $-a_s = -\sin 2\alpha$, $a_c = 0$ if penguin diagrams can be ignored
 - -however a_s, a_c modified by penguin contributions, hard to calculate
 - can be disentangled by measuring branching ratios $B^0 \to \pi^+\pi^-$, $B^0 \to \pi^0\pi^0$, $B^+ \to \pi^+\pi^0$

Experimental analysis:

- identify initial state b-charge
- reconstruct decay mode
- measure eigentime to decay (easy in LC environment with fully reconstructed decays)

Final state identification:

• Missing particle ID can be replaced by excellent momentum resolution



(Without cut on B-decay angle) Results

	$\sin 2\beta$	" $\sin 2\alpha$ "
BaBar/Belle	0.12	0.26
CDF	0.08	0.10
BTeV/year	0.03	0.02
ATLAS	0.02	0.14
LHC-b	0.01	0.05
$GigaZ (10^9 Zs)$	0.04	0.07

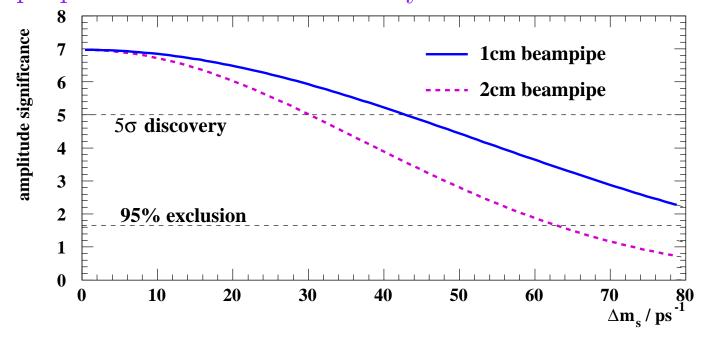
Interesting cross check with 10^9 Zs, with 10^{10} very competitive

Branching ratios $B^0 \to \pi^0 \pi^0$, $B^+ \to \pi^+ \pi^0$

• Competitive results to BaBar with 10⁹ Zs

$B_s\overline{B}_s$ -mixing

- "golden" mode: $B_s \to D_s \pi$, $D_s \to \phi \pi$, KK
- proper time res. dominated by vertex res.



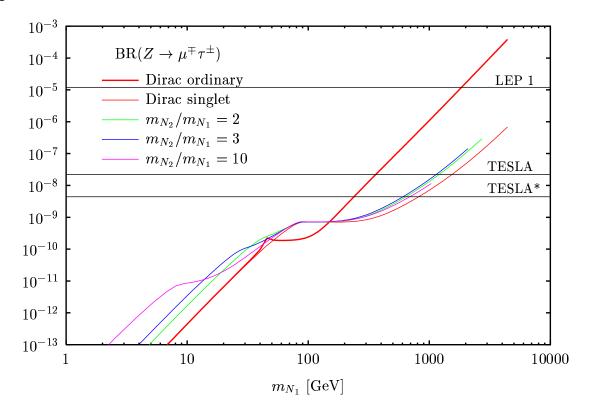
- $\Delta m_s \sim 40 \mathrm{ps}^{-1}$ possible
- resolution limit around $\Delta m_s \sim 80 \mathrm{ps}^{-1}$

And further

- Some rare b-decays might be accessible at GigaZ (e.g. $b \to s\nu\nu$)
- Tests of quark hadron duality (e.g. V_{cb} in B_s)

Rare Z decays

- with 10^9 Zs leptonic FCNC Z-decays like $Z \rightarrow e\tau, \mu\tau$ are visible on the 10^{-8} level
- e.g. some models with extra neutrinos predict signals on this level



• also some SUSY models predict measurable signals

Other possibly interesting fields

 τ -physics, charm-physics, gluon jets, what else?

Snowmass 2001, E3 GigaZ-24 Klaus Mönig

Machine and detector issues

Considered running mode:

•
$$\mathcal{L} = 5 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 200 \text{Z/s}$$

Machine characteristics:

- NLC: 180 trains/s with 190 bunches/train and 1.4ns bunch spacing
- TESLA: 5 trains/s with 2800 bunches/train and 340ns bunch spacing

Number of Zs per bunch/train:

	NLC-train	TESLA-bunch
0 Zs	0.33	0.986
1 Z	0.37	$1.4 \cdot 10^{-2}$
2 Zs	0.20	$9.7 \cdot 10^{-5}$
$\geq 3 \text{ Zs}$	0.10	$4.5 \cdot 10^{-7}$

- Z counting should be possible at both machines
- Luminosity/bunch might be enlarged if more beamstrahlung is tolerated (Not for electroweak physics!)
- Need detailed studies how many Zs/train affect B-physics specific topics like b-/anti-b-tagging, energy flow etc.

<u>Detector:</u>

Electroweak physics:

- $\bullet \sin^2 \theta_{\text{eff}}^{\ell}$ -measurement needs mainly Z-counting
- for partial widths need also good hermeticity and energy flow
- b-couplings require very good b-tagging
- ➤ the high energy detector is almost perfect

B-physics:

- $\pi/K/p$ -separation certainly helps
- however specialised detectors (RICH) tend to compromise energy-flow and momentum resolution
- good mass resolution largely replaces particle-id
- dE/dx has to be available
- a high B-field separates particles in jets and improves dE/dx
- excellent vertexing also helps to separate Zs in one bunch/train
- **→** also here the high-energy detector is very good

- With a modest effort a huge gain in the precision Z-observables is possible
- An improved $m_{\rm W}$ measurement is also possible if one spends a year for it
- These measurements allow stringent tests of the then-Standard-Model
- The CP-tests of BaBar/Belle/BTeV/LHC-b can be cross-checked with 10^9 Zs and possibly be improved with 10^{10} Zs
- Some new topics in B-physics, rare Z decays etc. can be studied
- By no means a present design should exclude the GigaZ option
- A facility with 10¹⁰ Zs looks interesting, but needs further study

For electroweak physics (10^9 Zs) :

- is e^+ polarisation possible, if yes, how much?
- how well can can we understand polarisation systematics?
- can we understand $\Delta \sqrt{s}/m_{\rm Z}$ to 10^{-5} ?
- how well can we understand beamstrahlung and beamspread?

For B-physics (10^{10} Zs) :

- how many Zs/bunch, train can we accept?
- do we need additional particle id, what can we sacrifice for it?
- can we go closer to the beam with the vertex detector?